


#### Agenda

- Theory
  - Populations and Samples
  - Classical Statistical Inference and Control Charts
  - Our World
  - Multivariate Adaptive Statistical Filtering (MASF)
    - Reference Sets
    - Aggregation Policies / Clustering Techniques
  - Users of MASF
    - Trubin
  - Other Methods
    - Kaminsky Pathology Detection
    - Seliverstov Stock Market Trending Techniques



#### Populations and Samples

- A Phrase worth remembering!
  - Populations have Parameters.
  - Samples have Statistics.
- A population is a set of data points with fixed boundaries.
- A sample is a <u>random</u> subset of a population.
- Classical statistical inference deals with estimating population parameters by taking samples and calculating statistics.



- Bottling machine fills 750 ml wine bottles.
  - Machine is engineered such that 99.7% of the time the amount of wine dispensed should be 750 +/- 1 ml.
- A bottling run of 5 barrels is planned.
  - 1,500 wine bottles.
  - Approximately 2 pallets worth of wine.

#### Wine Trivia

75 grapes = 1 cluster 1 cluster = 1 glass

4 glasses = 1 bottle

12 bottles = 1 case

300 bottles = 1 barrel



What is our data population?



- What is our data population?
  - 1,500 bottles.



- What is our data population?
  - 1,500 bottles
- What are it's parameters?

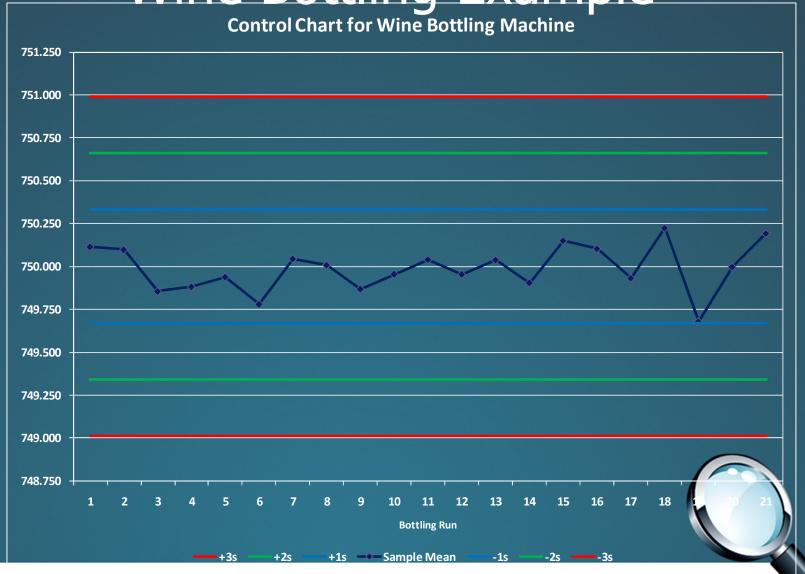


- What is our data population?
  - 1,500 bottles
- What are it's parameters?
  - Mean is 750 ml.
  - Standard Deviation is .33 ml.



- What is our data population?
  - 1,500 bottles
- What are it's parameters?
  - Mean is 750 ml
  - Standard Deviation is .33 ml
- How can we validate the bottling machine is working properly?
  - We want to be 99% certain the machine is working properly.
  - Manually measure the volume of 7 randomly selected bottles.
    - Sample size a function of Standard Deviation and error measure.

$$N = (z_{\alpha/2})^2 \sigma^2 / E^2$$


Conduct a two tailed Hypothesis test about the population mean.

| Bottle # | MI of Wine | Populatio | n Paramete | ers |           |          |         |
|----------|------------|-----------|------------|-----|-----------|----------|---------|
| 1        | 749.901    | Average   | 749.996    |     |           |          |         |
| 2        | 749.578    | Std Dev   | 0.335      |     |           |          |         |
| 3        | 750.081    |           |            |     | Sample    | Bottle # |         |
| 4        | 750.421    |           |            |     | 1         | 1245     | 749.356 |
| 5        | 750.395    |           |            |     | 2         | 1287     | 750.021 |
| 6        | 750.572    |           |            |     | 3         | 1500     | 750.271 |
| 7        | 749.279    |           |            |     | 4         | 128      | 750.176 |
| 8        | 749.923    |           |            |     | 5         | 82       | 750.476 |
| 9        | 750.361    |           |            |     | 6         | 17       | 749.813 |
| 10       | 749.641    |           |            |     | 7         | 866      | 749.989 |
| 11       | 749.772    |           |            |     |           |          |         |
| 12       | 749.442    |           |            |     | Sample St | atistics |         |
| 13       | 749.391    |           |            |     |           | Average  | 750.015 |
| 14       | 749.677    |           |            |     |           | Std Dev  | 0.361   |
| 15       | 749.745    |           |            |     |           |          |         |
| 16       | 749.301    |           |            |     |           | t-Value  | 0.116   |
| 17       | 749.813    |           |            |     |           | 95%      | 1.960   |
| 18       | 749.867    |           |            |     |           | 99%      | 2.576   |
| 1495     | 749.753    |           |            |     |           |          |         |
| 1499     | 749.784    |           |            |     |           |          |         |
| 1500     | 750.271    |           |            |     |           |          |         |

- Conclusion from test
  - There is insufficient evidence to reject the null hypothesis that the mean of the data population is 750 ml.
  - This conclusion does not imply or mean that the population mean is
     750 ml, it just states the evidence is not strong enough to reject it.
    - Nature of test.
    - Wesel wording.



Wine Bottling Example
Control Chart for Wine Bottling Machine



#### Classical Statistical Inference

- Key Points
  - Based on repeatable events.
    - The expected value is the same for each event.
  - Well defined batches or data populations.
  - Samples can be randomly taken from a data population.

Not exactly the kind of world we work in!



#### Our World

- Large volumes of data.
- Lots of variability in the data.
- Typically time series data sets.
- Populations boundaries not always clear.
- Difficult to randomly sample time series data sets.

- Conclusion
  - Classical statistical inference not well suited to analyze IT infrastructure instrumentation metrics.



#### MASF

- MASF Multivariate Adaptive Statistical Filtering.
- Seminal CMG paper written in 1995 by Buzen & Shum.
- Directly addresses the challenges and problems faced by Capacity
   Management professionals when working with operational metrics.
- Provides a different analytical framework to work with metrics.
- Suggests reporting formats for working with large groups of resources.

A must read paper for all Capacity Management practitioners!

Available on the <a href="https://www.cmg.org">www.cmg.org</a> website.

#### MASF

- Compare and contrast with sampling theory.
  - A fixed data population is replaced with a body of data that moves and changes over time.
  - A single random sample is replaced by multiple reference sets.
    - Random sample Best possible data to estimate population parameters.
    - Reference set A period of typical operation.
- Reference sets are aggregated across periods of typical operation to become an Adaptive Filtering Policy.
  - Between 10 to 20 reference set data points are needed.
    - You want the data to reflect recent experience.



#### Reference Set

- Typically each data point is one hour duration.
- A week can contain as many as 168 (24x7) reference sets.
  - Each hour of each day will be a separate measurement point.
  - A week provides one data point for each of the 168 reference sets.

| Day/Hour | 00  | 01  | 02  | 03  | 04  | 05  | 06  | 07  | 08  | 09  | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Mon      | 001 | 002 | 003 | 004 | 005 | 006 | 007 | 008 | 009 | 010 | 011 | 012 | 013 | 014 | 015 | 016 | 017 | 018 | 019 | 020 | 021 | 022 | 023 | 024 |
| Tue      | 025 | 026 | 027 | 028 | 029 | 030 | 031 | 032 | 033 | 034 | 035 | 036 | 037 | 038 | 039 | 040 | 041 | 042 | 043 | 044 | 045 | 046 | 047 | 048 |
| Wed      | 049 | 050 | 051 | 052 | 053 | 054 | 055 | 056 | 057 | 058 | 059 | 060 | 061 | 062 | 063 | 064 | 065 | 066 | 067 | 068 | 069 | 070 | 071 | 072 |
| Thur     | 073 | 074 | 075 | 076 | 077 | 078 | 079 | 080 | 081 | 082 | 083 | 084 | 085 | 086 | 087 | 088 | 089 | 090 | 091 | 092 | 093 | 094 | 095 | 096 |
| Fri      | 097 | 098 | 099 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| Sat      | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |
| Sun      | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 |



# Combining Reference Sets Across Weeks

- A key part of the MASF methodology.
- This implies that the workload is longitudinally stable.
- A conceptual design assumption that should be verified.



## Mainframe LPAR Reference Set

|         |      | Data   | CPU  |         |
|---------|------|--------|------|---------|
| Ref_Set | Hour | Points | Mean | CPU Std |
| 200     | 0    | 17     | 20.3 | 3.4     |
| 201     | 1    | 17     | 32.0 | 4.3     |
| 202     | 2    | 17     | 17.1 | 1.7     |
| 203     | 3    | 17     | 8.6  | 1.4     |
| 204     | 4    | 17     | 7.9  | 0.9     |
| 205     | 5    | 17     | 10.4 | 0.7     |
| 206     | 6    | 17     | 14.3 | 1.1     |
| 207     | 7    | 17     | 23.7 | 2.9     |
| 208     | 8    | 17     | 43.9 | 7.3     |
| 209     | 9    | 17     | 58.0 | 10.4    |
| 210     | 10   | 17     | 57.4 | 10.6    |
| 211     | 11   | 17     | 53.2 | 10.2    |
| 212     | 12   | 17     | 40.2 | 7.0     |
| 213     | 13   | 17     | 42.0 | 7.4     |
| 214     | 14   | 17     | 48.3 | 10.4    |
| 215     | 15   | 17     | 47.2 | 10.4    |
| 216     | 16   | 17     | 40.2 | 8.3     |
| 217     | 17   | 17     | 36.7 | 4.1     |
| 218     | 18   | 17     | 29.9 | 2.7     |
| 219     | 19   | 17     | 14.7 | 1.5     |
| 220     | 20   | 17     | 15.3 | 1.5     |
| 221     | 21   | 17     | 35.3 | 9.6     |
| 222     | 22   | 17     | 47.7 | 7.4     |
| 223     | 23   | 17     | 30.6 | 5.8     |



#### Mainframe LPAR Reference Set

|         |      | Data   | CPU  |         |
|---------|------|--------|------|---------|
| Ref_Set | Hour | Points | Mean | CPU Std |
| 200     | 0    | 17     | 20.3 | 3.4     |
| 201     | 1    | 17     | 32.0 | 4.3     |
| 202     | 2    | 17     | 17.1 | 1.7     |
| 203     | 3    | 17     | 8.6  | 1.4     |
| 204     | 4    | 17     | 7.9  | 0.9     |
| 205     | 5    | 17     | 10.4 | 0.7     |
| 206     | 6    | 17     | 14.3 | 1.1     |
| 207     | 7    | 17     | 23.7 | 2.9     |
| 208     | 8    | 17     | 43.9 | 7.3     |
| 209     | 9    | 17     | 58.0 | 10.4    |
| 210     | 10   | 17     | 57.4 | 10.6    |
| 211     | 11   | 17     | 53.2 | 10.2    |
| 212     | 12   | 17     | 40.2 | 7.0     |
| 213     | 13   | 17     | 42.0 | 7.4     |
| 214     | 14   | 17     | 48.3 | 10.4    |
| 215     | 15   | 17     | 47.2 | 10.4    |
| 216     | 16   | 17     | 40.2 | 8.3     |
| 217     | 17   | 17     | 36.7 | 4.1     |
| 218     | 18   | 17     | 29.9 | 2.7     |
| 219     | 19   | 17     | 14.7 | 1.5     |
| 220     | 20   | 17     | 15.3 | 1.5     |
| 221     | 21   | 17     | 35.3 | 9.6     |
| 222     | 22   | 17     | 47.7 | 7.4     |
| 223     | 23   | 17     | 30.6 | 5.8     |

|         |      | Data   | CPU  |         |
|---------|------|--------|------|---------|
| Ref_Set | Hour | Points | Mean | CPU Std |
| 200     | 0    | 10     | 19.6 | 1.6     |
| 201     | 1    | 10     | 31.9 | 4.6     |
| 202     | 2    | 10     | 18.0 | 1.0     |
| 203     | 3    | 10     | 8.1  | 0.6     |
| 204     | 4    | 10     | 8.1  | 8.0     |
| 205     | 5    | 10     | 10.4 | 0.7     |
| 206     | 6    | 10     | 14.2 | 1.2     |
| 207     | 7    | 10     | 23.8 | 3.1     |
| 208     | 8    | 10     | 44.2 | 7.6     |
| 209     | 9    | 10     | 58.6 | 11.3    |
| 210     | 10   | 10     | 57.6 | 11.4    |
| 211     | 11   | 10     | 53.9 | 10.8    |
| 212     | 12   | 10     | 40.4 | 7.6     |
| 213     | 13   | 10     | 42.4 | 7.6     |
| 214     | 14   | 10     | 48.7 | 11.0    |
| 215     | 15   | 10     | 47.6 | 10.6    |
| 216     | 16   | 10     | 40.4 | 8.8     |
| 217     | 17   | 10     | 36.8 | 4.3     |
| 218     | 18   | 10     | 30.0 | 3.4     |
| 219     | 19   | 10     | 15.1 | 1.6     |
| 220     | 20   | 10     | 15.8 | 613     |
| 221     | 21   | 10     | 40.2 | 6.5     |
| 222     | 22   | 10     | 43.1 | 1.9     |
| 223     | 23   | 10     | 29.8 | 4.0     |

#### Validating Longitudinal Stability

- Previous example was a simple visual inspection of the two tables.
  - The artist approach.
- A better approach would be to measure the differences against established thresholds.
  - Consider the workload stable if the mean difference is less than 1.5% and the variance difference is less than 2.5% for 90% of the Reference Sets of interest.
  - The scientist approach.



## Validating Longitudinal Stability

|         |                                      |      | Data   | CPU  |                          | Data   | CPU  |         | Delta                        |           |
|---------|--------------------------------------|------|--------|------|--------------------------|--------|------|---------|------------------------------|-----------|
| Ref_Set | Date                                 | Hour | Points | Mean | CPU Std                  | Points | Mean | CPU Std | Mean                         | Delta Std |
| 200     | 1/3/2011                             | 0    | 17     | 20.3 | 3.4                      | 10     | 19.6 | 1.6     | 0.                           | 7 1.8     |
| 201     | 1/3/2011                             | 1    | 17     | 32.0 | 4.3                      | 10     | 31.9 | 4.6     | 0.                           | 1 -0.3    |
| 202     | 1/3/2011                             | 2    | 17     | 17.1 | 1.7                      | 10     | 18.0 | 1.0     | -1.                          | 0.8       |
| 203     | 1/3/2011                             | 3    | 17     | 8.6  | 1.4                      | 10     | 8.1  | 0.6     | 0.                           | 0.8       |
| 204     | 1/3/2011                             | 4    | 17     | 7.9  |                          | 10     | 8.1  | 0.8     | -0.                          | 1 0.1     |
| 205     | 1/3/2011                             | 5    | 17     | 10.4 | 0.7                      | 10     | 10.4 | 0.7     | 0.0                          | 0.0       |
| 206     | 1/3/2011                             | 6    | 17     | 14.3 | 1.1                      | 10     | 14.2 | 1.2     | 0.                           | 1 -0.1    |
| 207     | 1/3/2011                             | 7    | 17     | 23.7 | 2.9                      | 10     | 23.8 | 3.1     | -0.                          | 1 -0.2    |
| 208     | 1/3/2011                             | 8    | 17     | 43.9 | 7.3                      | 10     | 44.2 | 7.6     | -0.                          | 3 -0.4    |
| 209     | 1/3/2011                             | 9    | 17     | 58.0 | 10.4                     | 10     | 58.6 | 11.3    | -0.                          | 6 -0.9    |
| 210     | 1/3/2011                             | 10   | 17     | 57.4 | 10.6                     | 10     | 57.6 | 11.4    | -0.                          | 2 -0.8    |
| 211     | 1/3/2011                             | 11   | 17     | 53.2 | 10.2                     | 10     | 53.9 | 10.8    | -0.                          | 7 -0.6    |
| 212     | 1/3/2011                             | 12   | 17     | 40.2 | 7.0                      | 10     | 40.4 | 7.6     | -0.                          | 2 -0.7    |
| 213     | 1/3/2011                             | 13   | 17     | 42.0 | 7.4                      | 10     | 42.4 | 7.6     | -0.                          | 4 -0.3    |
| 214     | 1/3/2011                             | 14   | 17     | 48.3 | 10.4                     | 10     | 48.7 | 11.0    | -0.                          | 4 -0.6    |
| 215     | 1/3/2011                             | 15   | 17     | 47.2 | 10.4                     | 10     | 47.6 | 10.6    | -0.                          | 4 -0.2    |
| 216     | 1/3/2011                             | 16   | 17     | 40.2 | 8.3                      | 10     | 40.4 | 8.8     | -0.                          | 3 -0.4    |
| 217     | 1/3/2011                             | 17   | 17     | 36.7 | 4.1                      | 10     | 36.8 | 4.3     | -0.                          | 1 -0.1    |
| 218     | 1/3/2011                             | 18   | 17     | 29.9 | 2.7                      | 10     | 30.0 | 3.4     | -0.                          | 1 -0.7    |
| 219     | 1/3/2011                             | 19   | 17     | 14.7 | 1.5                      | 10     | 15.1 | 1.6     | -0.                          | 4 -0.2    |
| 220     | 1/3/2011                             | 20   | 17     | 15.3 | 1.5                      | 10     | 15.8 | 1.5     | -0.                          | -0.1      |
| 221     | 1/3/2011                             | 21   | 17     | 35.3 | 9.6                      | 10     | 40.2 | 6.5     | -5.                          | 3.1       |
| 222     | 1/3/2011                             | 22   | 17     | 47.7 | 7.4                      | 10     | 43.1 | 1.9     | 4.                           | 5 5.6     |
| 223     | 1/3/2011                             | 23   | 17     | 30.6 | 5.8                      | 10     | 29.8 | 4.0     |                              | 1.8       |
|         | Name and Address of the Owner, which |      |        |      | The second second second |        |      |         | COLUMN TWO IS NOT THE OWNER. |           |

#### Validating Longitudinal Stability

- Conclusion.
  - Using the 1.5%/2.5% criteria, this is a very stable workload week over week. Only two non prime Reference Sets exceeded the threshold.
- Other calculation schemes are possible.
- There is no single right or wrong answer here.
- Longitudinal Stability is another way of saying this is a period of typical operation.
- The MASF framework also recognizes the need for seasonal adjustments to resource consumption profiles.
- Ultimately you will need to make a judgment call about the stability of the workload over time.

#### Adaptive Filtering Policy

- Building an Adaptive Filtering Policy involves aggregating each reference set across multiple weeks of typical operation.
  - Reference Set #001 0000 Monday
    - Data Point #01 02 May 2011
    - Data Point #02 09 May 2011
    - Data Point #03 16 May 2011
    - Repeat 17 times
  - Reference Set #002 #168
    - Repeat above steps
- This process will take 20 weeks to develop the policy.
  - Too long a period for most workloads, not good.
  - Need to aggregate similar Reference Sets within a week.



# Combining Reference Sets within a Week

- Computationally similar to validating longitudinal stability.
  - Look for Reference Sets with similar mean and variance values for a given week.
  - The consolidations should be done within windows of common usage patterns.
    - Example Don't consolidate a prime shift online workload with an off prime shift batch workload even if they have similar resource consumptions profiles.



- One possible computational framework.
  - Divide the week into the following groups.
    - Four 6 hour shifts 00-05,06-11,12-17,18-23
    - Weekday and Weekend groups.
    - A total of 8 groups
- Within each group look for consolidation opportunities.

| Day/Hour | 00  | 01  | 02  | 03  | 04  | 05  | 06  | 07  | 08  | 09  | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Mon      | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 |
| Tue      | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 |
| Wed      | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 | 423 |
| Thur     | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 | 510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 |
| Fri      | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 | 610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 |
| Sat      | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 |
| Sun      | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 1.9 | 120 | 121 | 122 | 123 |

• The table now contains the mean value for each Reference Set.

| Day/Hour | 00   | 01   | 02   | 03   | 04   | 05   | 06   | 07   | 08   | 09   | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 17   | 18   | 19   | 20   | 21   | 22   | 23   |
|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Mon      | 19.6 | 31.9 | 18.0 | 8.1  | 8.1  | 10.4 | 14.2 | 23.8 | 44.2 | 58.6 | 57.6 | 53.9 | 40.4 | 42.4 | 48.7 | 47.6 | 40.4 | 36.8 | 30.0 | 15.1 | 15.8 | 40.2 | 43.1 | 29.8 |
| Tue      | 38.1 | 38.4 | 26.7 | 14.4 | 9.4  | 11.1 | 14.3 | 23.1 | 43.4 | 57.3 | 57.9 | 53.1 | 39.6 | 43.6 | 50.0 | 48.5 | 41.2 | 38.7 | 30.6 | 15.0 | 15.6 | 41.6 | 43.4 | 29.7 |
| Wed      | 42.8 | 38.9 | 27.7 | 12.9 | 8.8  | 10.6 | 13.4 | 21.2 | 41.5 | 54.2 | 54.7 | 50.6 | 37.2 | 41.5 | 47.6 | 46.2 | 40.1 | 36.6 | 28.4 | 15.0 | 15.7 | 35.2 | 43.8 | 27.2 |
| Thur     | 45.5 | 45.1 | 28.4 | 13.7 | 9.4  | 10.4 | 13.3 | 21.5 | 40.3 | 52.9 | 52.9 | 48.4 | 36.1 | 40.2 | 45.5 | 44.1 | 37.9 | 23.7 | 16.6 | 13.8 | 14.5 | 40.9 | 42.9 | 28.9 |
| Fri      | 44.3 | 41.0 | 29.6 | 12.8 | 8.7  | 11.3 | 13.3 | 20.2 | 37.3 | 48.6 | 49.9 | 45.9 | 34.3 | 38.8 | 43.1 | 41.2 | 34.7 | 20.3 | 14.8 | 13.1 | 13.6 | 40.2 | 39.1 | 27.9 |
| Sat      | 38.1 | 38.0 | 28.6 | 17.3 | 11.5 | 8.9  | 9.3  | 11.4 | 14.1 | 14.4 | 14.6 | 13.3 | 12.0 | 15.2 | 13.4 | 12.4 | 10.9 | 18.1 | 19.4 | 11.8 | 10.7 | 39.3 | 29.7 | 15.8 |
| Sun      | 19.7 | 13.5 | 11.1 | 13.7 | 8.9  | 14.7 | 16.2 | 17.2 | 19.5 | 16.7 | 17.5 | 13.7 | 12.1 | 12.9 | 10.5 | 11.4 | 10.7 | 21.5 | 22.6 | 14.4 | 26.5 | 26.6 | 33.1 | 27.2 |



- Within each group divide the Reference Sets into a small and large variance sub group and order by mean value for each sub group.
- Start a consolidation group with the lowest value observation and add 1.5% to it's mean value. This becomes the upper limit for the current consolidation group.
- Iterate through the observations until the mean value of the nth observation exceeds the upper limit. All observations up to that point are in the same consolidation group. Start a new consolidation group with the observation that exceeded the upper limit.
- Repeat process for each variance sub group.



|       | Ref | CPU  | CPU |       | Ref | CPU  | CPU  |       | Ref | CPU  | CPU  | THE SE | Ref | CPU  | CPU |
|-------|-----|------|-----|-------|-----|------|------|-------|-----|------|------|--------|-----|------|-----|
| Group | Set | Mean | Std | Group | Set | Mean | Std  | Group | Set | Mean | Std  | Group  | Set | Mean | Std |
| 1     | 204 | 8.1  | 0.8 | 2     | 506 | 13.3 | 1.4  | 3     | 617 | 20.3 | 0.6  | 4      | 619 | 13.1 | 0.7 |
| 1     | 203 | 8.1  | 0.6 | 2     | 606 | 13.3 | 0.9  | 3     | 517 | 23.7 | 1.2  | 4      | 620 | 13.6 | 0.9 |
| 1     | 604 | 8.7  | 2.0 | 2     | 406 | 13.4 | 0.7  | 3     | 612 | 34.3 | 4.5  | 4      | 519 | 13.8 | 1.2 |
| 1     | 404 | 8.8  | 1.2 | 2     | 206 | 14.2 | 1.2  | 3     | 616 | 34.7 | 1.0  | 4      | 520 | 14.5 | 0.8 |
| 1     | 504 | 9.4  | 1.1 | 2     | 306 | 14.3 | 1.6  | 3     | 512 | 36.1 | 1.4  | 4      | 618 | 14.8 | 0.9 |
| 1     | 304 | 9.4  | 1.5 | 2     | 607 | 20.2 | 1.2  | 3     | 417 | 36.6 | 1.3  | 4      | 419 | 15.0 | 0.9 |
| 1     | 205 | 10.4 | 0.7 | 2     | 407 | 21.2 | 1.1  | 3     | 217 | 36.8 | 4.3  | 4      | 319 | 15.0 | 0.9 |
| 1     | 505 | 10.4 | 1.0 | 2     | 507 | 21.5 | 1.2  | 3     | 412 | 37.2 | 1.1  | 4      | 219 | 15.1 | 1.6 |
| 1     | 405 | 10.6 | 1.2 | 2     | 307 | 23.1 | 1.5  | 3     | 516 | 37.9 | 1.0  | 4      | 320 | 15.6 | 0.6 |
| 1     | 305 | 11.1 | 1.5 | 2     | 207 | 23.8 | 3.1  | 3     | 317 | 38.7 | 1.3  | 4      | 420 | 15.7 | 1.5 |
| 1     | 605 | 11.3 | 1.6 | 2     | 608 | 37.3 | 1.3  | 3     | 613 | 38.8 | 4.2  | 4      | 220 | 15.8 | 1.5 |
| 1     | 603 | 12.8 | 1.8 | 2     | 508 | 40.3 | 1.3  | 3     | 312 | 39.6 | 1.5  | 4      | 518 | 16.6 | 0.6 |
| 1     | 403 | 12.9 | 1.9 | 2     | 408 | 41.5 | 1.7  | 3     | 416 | 40.1 | 1.1  | 4      | 423 | 27.2 | 4.1 |
| 1     | 503 | 13.7 | 8.0 | 2     | 308 | 43.4 | 1.7  | 3     | 513 | 40.2 | 1.1  | 4      | 623 | 27.9 | 0.5 |
| 1     | 303 | 14.4 | 4.7 | 2     | 208 | 44.2 | 7.6  | 3     | 216 | 40.4 | 8.8  | 4      | 418 | 28.4 | 1.9 |
| 1     | 202 | 18.0 | 1.0 | 2     | 611 | 45.9 | 1.7  | 3     | 212 | 40.4 | 7.6  | 4      | 523 | 28.9 | 1.4 |
| 1     | 200 | 19.6 | 1.6 | 2     | 511 | 48.4 | 1.1  | 3     | 615 | 41.2 | 1.6  | 4      | 323 | 29.7 | 1.3 |
| 1     | 302 | 26.7 | 6.5 | 2     | 609 | 48.6 | 1.7  | 3     | 316 | 41.2 | 0.9  | 4      | 223 | 29.8 | 4.0 |
| 1     | 402 | 27.7 | 4.3 | 2     | 610 | 49.9 | 1.5  | 3     | 413 | 41.5 | 1.3  | 4      | 218 | 30.0 | 3.4 |
| 1     | 502 | 28.4 | 2.2 | 2     | 411 | 50.6 | 2.2  | 3     | 213 | 42.4 | 7.6  | 4      | 318 | 30.6 | 2.3 |
| 1     | 602 | 29.6 | 4.0 | 2     | 509 | 52.9 | 1.8  | 3     | 614 | 43.1 | 3.2  | 4      | 421 | 35.2 | 2.0 |
| 1     | 201 | 31.9 | 4.6 | 2     | 510 | 52.9 | 1.2  | 3     | 313 | 43.6 | 1.8  | 4      | 622 | 39.1 | 0.9 |
| 1     | 300 | 38.1 | 7.9 | 2     | 311 | 53.1 | 1.8  | 3     | 515 | 44.1 | 1.3  | 4      | 621 | 40.2 | 1.4 |
| 1     | 301 | 38.4 | 4.6 | 2     | 211 | 53.9 | 10.8 | 3     | 514 | 45.5 | 1.0  | 4      | 221 | 40.2 | 6.5 |
| 1     | 401 | 38.9 | 5.2 | 2     | 409 | 54.2 | 1.3  | 3     | 415 | 46.2 | 2.1  | 4      | 521 | 40.9 | 0.9 |
| 1     | 601 | 41.0 | 4.9 | 2     | 410 | 54.7 | 1.2  | 3     | 215 | 47.6 | 10.6 | 4      | 321 | 41.6 | 0.8 |
| 1     | 400 | 42.8 | 7.3 | 2     | 309 | 57.3 | 2.2  | 3     | 414 | 47.6 | 1.6  | 4      | 522 | 42.9 | 1.4 |
| 1     | 600 | 44.3 | 6.0 | 2     | 310 | 57.9 | 1.7  | 3     | 315 | 48.5 | 2.1  | 4      | 222 | 43.1 | 1.9 |
| 1     | 501 | 45.1 | 2.5 | 2     | 210 | 57.6 | 11.4 | 3     | 214 | 48.7 | 11.0 | 4      | 322 | 43.4 | 1.4 |
| 1     | 500 | 45.5 | 4.7 | 2     | 209 | 58.6 | 11.3 | 3     | 314 | 50.0 | 1.9  | 4      | 422 | 43.8 | 2.3 |

- The consolidated Reference Sets become Computational Groups.
- Calculate control limits for each Computational Group.
  - Simple mean and standard deviation typically used.
  - Other more sophisticated methods can also be used.
    - Favor recent events over older data.
- Map these values back to the Reference Sets they came from.

- We now have an Adaptive Filtering Policy!
  - Use this to evaluate future period activity.
  - May be adjusted to reflect seasonal activity.

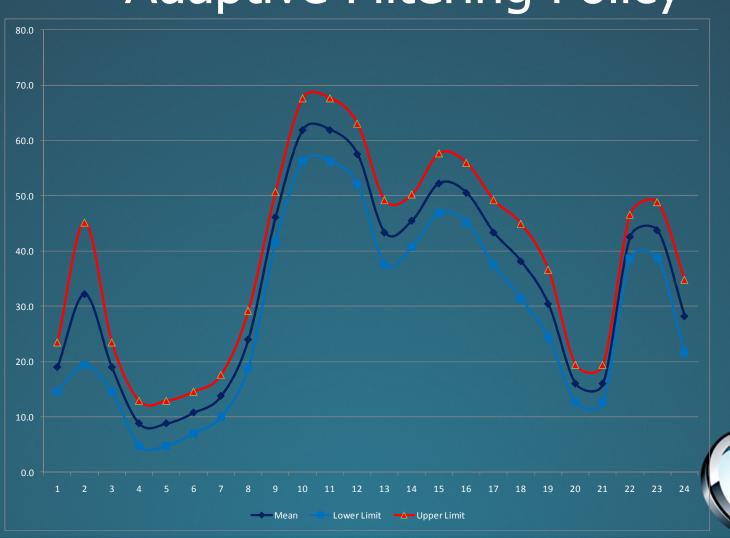


| Compute | Data   | Metric | Metric |
|---------|--------|--------|--------|
| Group   | Points | Mean   | Std    |
| 1       | 60     | 8.8    | 1.3    |
| 2       | 50     | 10.8   | 1.2    |
| 3       | 30     | 13.1   | 1.6    |
| 4       | 20     | 19.0   | 1.5    |
| 5       | 20     | 29.0   | 3.2    |
| 6       | 10     | 45.1   | 2.5    |
| 7       | 50     | 13.8   | 1.3    |
| 8       | 30     | 21.0   | 1.2    |
| 9       | 20     | 24.0   | 1.7    |
| 10      | 10     | 37.3   | 1.3    |
| 11      | 20     | 40.9   | 1.6    |
| 12      | 10     | 43.4   | 1.7    |
| 13      | 20     | 46.1   | 1.5    |
| 14      | 30     | 49.0   | 1.5    |
| 59      | 10     | 39.3   | 0.6    |
| 60      | 10     | 14.4   | 4.7    |
| 61      | 20     | 27.2   | 5.4    |
| 62      | 10     | 32.2   | 4.3    |
| 63      | 30     | 38.5   | 5.9    |
| 64      | 20     | 41.9   | 6.1    |
| 65      | 20     | 44.9   | 5.3    |
| 66      | 10     | 34.3   | 4.5    |
| 67      | 10     | 9.2    | 4.4    |
| 68      | 10     | 11.8   | 5.4    |
| 69      | 10     | 13.8   | 8.0    |

## Sample Adaptive Filtering Policy

| Reference | Metric | Metric | Compute | Data   |
|-----------|--------|--------|---------|--------|
| Set       | Mean   | Std    | Group   | Points |
| 200       | 19.0   | 1.5    | 4       | 20     |
| 201       | 32.2   | 4.3    | 62      | 10     |
| 202       | 19.0   | 1.5    | 4       | 20     |
| 203       | 8.8    | 1.3    | 1       | 60     |
| 204       | 8.8    | 1.3    | 1       | 60     |
| 205       | 10.8   | 1.2    | 2       | 50     |
| 206       | 13.8   | 1.3    | 7       | 50     |
| 207       | 24.0   | 1.7    | 9       | 20     |
| 208       | 46.1   | 1.5    | 13      | 20     |
| 209       | 61.9   | 1.9    | 18      | 20     |
| 210       | 61.9   | 1.9    | 18      | 20     |
| 211       | 57.6   | 1.8    | 17      | 30     |
| 212       | 43.4   | 1.9    | 24      | 50     |
| 213       | 45.5   | 1.6    | 25      | 30     |
| 214       | 52.3   | 1.8    | 28      | 10     |
| 215       | 50.5   | 1.8    | 27      | 20     |
| 216       | 43.4   | 1.9    | 24      | 50     |
| 217       | 38.1   | 2.3    | 22      | 50     |
| 218       | 30.4   | 2.0    | 32      | 30     |
| 219       | 16.0   | 1.1    | 30      | 50     |
| 220       | 16.0   | 1.1    | 30      | 50     |
| 221       | 42.6   | 1.3    | 35      | 40     |
| 222       | 43.8   | 1.7    | 36      | 20     |
| 223       | 28.2   | 2.2    | 31      | 50     |




## Sample Adaptive Filtering Policy

- Typical Use
  - Create an Adaptive Filtering Policy weekly.
    - Use 8 to 10 weeks of historical data.
    - Supplement with any seasonal or holiday adjustments.
  - Use the policy to evaluate one weeks worth of actual data.
  - Repeat process.

- There are many other ways this framework can be used!
- No right or wrong answer here.



## Adaptive Filtering Policy



#### **MASF** Review

- Different conceptual framework for handling metrics.
- Divide and conquer the dynamic metrics we work with.
- Treat each hour of each day as a separate data population (aka Reference Set) and aggregate over time.
- Look for similar hours within shifts and combine Reference Sets to create Computational Groups.
- Use Computational Groups to create limits and map them back to the Reference Sets they represent.
- Apply any seasonal adjustment to the control limits.
- The result is an Adaptive Filtering Policy that will be used to evaluate future period activity.

#### The Master of MASF

- Igor Trubin IBM
  - Exception Detection System, Based on the Statistical Process Control
     Concept 2001
  - Global and Application Level Exception Detection System, Based on MASF Technique – 2002
  - Disk Subsystem Capacity Management, Based on Business Drivers, I/O
     Performance and MASF 2003
  - Global and Application Level Exception Detection System, Based on MASF Technique – 2004
  - Capturing Workload Pathology by Statistical Exception Detection
     System 2005

#### The Master of MASF

- System Management by Exception, Part 6 2006
- System Management by Exception: The Final Part 2007

• Blog – itrubin.blogspot.com



#### Igor's Blog

#### SYSTEM MANAGEMENT BY EXCEPTION

HOW STATISTICAL FILTERING TECHNIQUES SUCH AS SPC, MASF, SIX SIGMA AND SEDS (STATISTICAL EXCEPTION DETECTION) ARE USED FOR CAPACITY MANAGEMENT ... BY IGOR TRUBIN

SEARCH THIS BLOG

Search

powered by Google™

BLOG ARCHIVE

- ▶ 2007(2)
- ▶ 2008 (2)
- ▶ 2009 (15)
- ▶ 2010 (17)
- ▼ 2011 (4)

MONDAY, APRIL 25, 2011

#### UCL=LCL: How many standard deviations do we use for Control Charting? Use ZERO!

How many standard deviations do we use for upper (UCL) and lower (LCL) limits calculations on a control charts? 3? 1? What about 0 st. dev.!? Indeed, the simplest way to build MASF data for exception detection is to use 168 weekly hours averages as a baseline, so that would be the case when ZERO st. Dev is used to make UCL=LCL! Plus for further simplification the current data could be included in wider historical baseline (Why not?). My EV meta-metric in this case would be just difference between actual metric value and the average over baseline!

#### Related Papers

- Ron Kaminski Kimberly Clark
  - Automating Process and Workload Pathology Detection
  - Automating Process Pathology Detection Rule Engine Design Hints
  - Time Stable Workload Characterization Techniques
  - Automating Workload Characterization by Policy
  - Business Metrics and Capacity Planning
- Dima Seliverstov BMC Software
  - Application of Stock Market Technical Analysis Techniques for Computer System Performance Data
  - Applicability of Spectral Analysis Techniques to Computer Performance
     Data Analysis

#### Summary

- The primary objective here is to identify analytical techniques that will allow us to monitor large pools of servers and other infrastructure assets to look for discernable change to their usage patters.
- If this was easy, it would have been done a long time ago.

• It will not work for all workloads, all the time.



#### Summary

- A positive note
  - Even if workloads are not repeatable and can't be monitored by this technique, displaying the mean and control limits for a workload provides valuable insights into it's behavior.
  - Reporting the variability of a variable along with its value is recommended for most management reporting efforts.

